1 Light propagation and emission in complex photonic media

نویسندگان

  • ALLARD P. MOSK
  • Willem L. Vos
  • Allard P. Mosk
چکیده

In many areas in the physical sciences, the propagation of waves in complex media plays a central role. Acoustics, applied mathematics, elastics, environmental sciences, mechanics, marine sciences, medical sciences, microwaves, and seismology are just a few examples, and of course nanophotonics [6, 429, 448, 449]. Here, complex media are understood to exhibit a strongly inhomogeneous spatial structure, which determines to a large extent their linear and nonlinear properties. Examples of complex media are random, heterogeneous, porous, and fractal media. The challenges that researchers in these areas must surmount to describe, understand, and ultimately predict wave propagation are formidable. Right from the start of this field – in the early 1900s – it was clear that new concepts and major approximations had to be introduced. Famous examples of such concepts are the effective medium theory [55, 60, 321] and the radiative transport theory [81, 491]. These concepts are very much alive, even today. The fundamental challenge with these approximate concepts is that often the length scales of the inhomogeneities in the complex medium are comparable with the wavelength, whereas the range of validity of these approximations is restricted to situations where these length scales are much larger than the wavelength. Consequently, many relevant situations arise where either the effective medium theory, or radiative transport theory, or both, fail dramatically. Examples of such situations are given in this introduction and throughout this book. The complexity of the medium that supports wave propagation can be classified in a number of ways. Many different types of spatial inhomogeneities in a host matrix can be envisioned, varying from completely random, via aperiodic and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tic s ] 2 6 A pr 2 01 5 Light propagation and emission in complex photonic media

We provide an introduction to complex photonic media, that is, composite materials with spatial inhomogeneities that are distributed over length scales comparable to or smaller than the wavelength of light. This blossoming field is firmly rooted in condensed matter physics, in optics, and in materials science. Many stimulating analogies exist with other wave phenomena such as sound and seismolo...

متن کامل

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures

In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect             and waveguiding behavior of electr...

متن کامل

Quantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure

We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014